The Thermal Resistance Concept

The Fourier equation, for steady conduction through a constant area plane wall, can be
written:
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Rwar is the thermal resistance of the wall against heat conduction or simply the conduction
resistance of the wall.

The heat transfer across the fluid/solid interface is based on Newton’s law of cooling:
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Reonv is the thermal resistance of the surface against heat convection or simply the
convection resistance of the surface.

Thermal radiation between a surface of area A at T; and the surroundings at T.. can be
expressed as:
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where o = 5.67x10® [W/m?K] is the Stefan-Boltzman constant. Also 0 < € <1 is the
emissivity of the surface. Note that both the temperatures must be in Kelvin.
Thermal Resistance Network

Consider steady, one-dimensional heat flow through two plane walls in series which are
exposed to convection on both sides, see Fig. 2. Under steady state condition:

rate of heat = rate of heat = rate of heat = rate of heat
convection conduction conduction through convection from the
into the wall through wall 1 wall 2 wall
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Note that A is constant area for a plane wall. Also note that the thermal resistances are in
series and equivalent resistance is determined by simply adding thermal resistances.

R1 Rz R3 R4

Fig. 2: Thermal resistance network.

The rate of heat transfer between two surfaces is equal to the temperature difference
divided by the total thermal resistance between two surfaces.

It can be written:
AT=Q'R

The thermal resistance concept is widely used in practice; however, its use is limited to
systems through which the rate of heat transfer remains constant. It other words, to
systems involving steady heat transfer with no heat generation.

M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 4



Thermal Resistances in Parallel

The thermal resistance concept can be used to solve steady state heat transfer problem in
parallel layers or combined series-parallel arrangements.

It should be noted that these problems are often two- or three dimensional, but
approximate solutions can be obtained by assuming one dimensional heat transfer (using
thermal resistance network).
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Fig. 3: Parallel resistances.
. . . -1, T,-T, 1 1
=Q; +Q, = + =T, -T,) —+—
Q Ql QZ Rl RZ ( 1 2 Rl RZ
o _ T1 _Tz
Q= R

total

1 1 1 1 RR,
R R, R,) Ryy R +R,

total total
Example 1: Thermal Resistance Network

Consider the combined series-parallel arrangement shown in figure below. Assuming one
—dimensional heat transfer, determine the rate of heat transfer.
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Fig. 4: Schematic for example 1.

Solution:

The rate of heat transfer through this composite system can be expressed as:
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Two approximations commonly used in solving complex multi-dimensional heat transfer
problems by transfer problems by treating them as one dimensional, using the thermal
resistance network:

1- Assume any plane wall normal to the x-axis to be isothermal, i.e. temperature to vary in
one direction only T = T(x)

2- Assume any plane parallel to the x-axis to be adiabatic, i.e. heat transfer occurs in the x-
direction only.

These two assumptions result in different networks (different results). The actual result
lies between these two results.
Heat Conduction in Cylinders and Spheres

Steady state heat transfer through pipes is in the normal direction to the wall surface (no
significant heat transfer occurs in other directions). Therefore, the heat transfer can be
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modeled as steady-state and one-dimensional, and the temperature of the pipe will
depend only on the radial direction, T=T (r).

Since, there is no heat generation in the layer and thermal conductivity is constant, the
Fourier law becomes:
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Fig. 5: Steady, one-dimensional heat conduction in a cylindrical layer.

After integration:
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where Ry is the conduction resistance of the cylinder layer.

Following the analysis above, the conduction resistance for the spherical layer can be
found:
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The convection resistance remains the same in both cylindrical and spherical coordinates,

Reony = 1/hA. However, note that the surface area A = 2nrl (cylindrical) and A = anr’
(spherical) are functions of radius.

Example 2: Multilayer cylindrical thermal resistance network

Steam at Tw,; = 320 °C flows in a cast iron pipe [k = 80 W/ m.°C] whose inner and outer
diameter are D; = 5 cm and D, = 5.5 cm, respectively. The pipe is covered with a 3-cm-
thick glass wool insulation [k = 0.05 W/ m.°C]. Heat is lost to the surroundings at Te., = 5°C
by natural convection and radiation, with a combined heat transfer coefficient of h, =18
W/m?. °C. Taking the heat transfer coefficient inside the pipe to be h; = 60 W/m?K,
determine the rate of heat loss from the steam per unit length of the pipe. Also determine
the temperature drop across the pipe shell and the insulation.

Assumptions:

Steady-state and one-dimensional heat transfer.

Solution:

Taking L = 1 m, the areas of the surfaces exposed to convection are:
A;=2nril =0.157 m’

A;=2nr,l = 0.361 m’

Roona = L . : ~=0.106 “C/W

A (60w /m? C0.157m?)
R =Ry, = (/1) _ 4 o002°c 1w

27K, L
|
RZ = Rinsulation = M =235C/W
27K, L

Roonv.2 = 1 o154 ciw

’ h2A2
Rtotal = Rconv,l + Rl + RZ + Rconv,z =2.61'C/W
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Fig. 6: Schematic for example 1.

The steady-state rate of heat loss from the steam becomes

. Tool _Too 2 H
Q' =——==120.7TW (per m pipe length)

total

The total heat loss for a given length can be determined by multiplying the above quantity
by the pipe length.

The temperature drop across the pipe and the insulation are:
AT, =Q"R,,, = (120.7W)(0.0002 "C/W )=0.02"C
AT eation = Q" Riasmion = (120.7W)(2.35 “C /W )= 284°C

insulation

Note that the temperature difference (thermal resistance) across the pipe is too small
relative to other resistances and can be ignored.

Critical Radius of Insulation

To insulate a plane wall, the thicker the insulator, the lower the heat transfer rate (since
the area is constant). However, for cylindrical pipes or spherical shells, adding insulation
results in increasing the surface area which in turns results in increasing the convection
heat transfer. As a result of these two competing trends the heat transfer may increase or
decrease.
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Fig. 7: Critical radius of insulation.
The variation of Q" with the outer radius of the insulation reaches a maximum that can be

determined from dQ" / dr, = 0. The value of the critical radius for the cylindrical pipes and
spherical shells are:

k

rcr,cylinder = F (m)
2k

rcr,spherer = T (m)

Note that for most applications, the critical radius is so small. Thus, we can insulate hot
water or steam pipes without worrying about the possibility of increasing the heat
transfer by insulating the pipe.
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